
«Математика, лежащая в основе голографии,
как я её понимаю» 

В. А. Боровиков

1. Введение

Наша  задача,  весьма  частная  с  точки  зрения  общих  проблем  голографии,

заключается в следующем. Мы имеем:

1) Оптическую ось z.

2) Оригинал, находящийся в плоскости z=d и заданный в некотором 

прямоугольнике S распределением плотности источников V(x,y). 

3) Плоскость z=0 голограммы и прямоугольник G в этой плоскости, внутри 

которого находится голограмма.. 

4) Излучаемое оригиналом предметное поле U(x,y,z), состоящее из когерентной 

суперпозиции полей диполей, испускаемых из точек (p,q,d) с задающим 

оригинал распределением плотности V(p,q).

Предполагается,  что  все  поля  –  монохроматические,  с  круговой  частотой  ω,

волновым  числом  k=ω/c и  длиной  волны  λ=2π/k,  т.е.  удовлетворяют  уравнению

Гельмгольца Δu+k2u=0.

Требуется по значениям  U(x,y,0)  предметного поля в плоскости голограммы внутри

прямоугольника G восстановить оригинал, т.е. распределение плотности V(x,y). Очевидно,

точного  решения  эта  задача  не  имеет  (см.  ниже).  Поэтому  требуется  найти  алгоритм,

дающий наилучшее приближение к  V(x,y) (точный смысл этого термина ещё предстоит

определить). 

Поясним  прежде  всего,  почему  нельзя  восстановить  точное  предметное  поле

посредством любой (в том числе и комплексной) голограммы, т.е. любого распределения

источников в плоскости голограммы, приведя аргументы математика и радиофизика. 

Качественные  соображения  математика:  Чтобы  воспроизвести  в  плоскости

оригинала поле с амплитудой  V(x,y),  следует подобрать такое распределение источников

на голограмме, чтобы созданное ими поле сходилось к оригиналу, т.е. имело те же лучи,

что и предметное поле и противоположное направление распространения. Но в результате

получим  поле,  не  содержащее  источников  в  плоскости  оригинала;  в  то  время,  как

предметное поле создано такими источниками. Ясно, что в плоскости оригинала эти поля

могут совпадать лишь приближенно.
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Спектральный  расчет  радиофизика:  Обозначим  через W(ξ,η)  спектр  функции,

равной V(x,y) внутри S и нулю вне S, тогда:
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где  интегрирование  проводится  по  всем  -∞<ξ,η<∞.  Тогда  предметное  поле  U(x,y,d)  в

плоскости голограммы запишется в форме интеграла
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где  первый  интеграл  описывает  плоские  волны,  распространяющиеся  от  плоскости

оригинала, а второй – затухающие плоские волны. 

Если  принять  функцию  U(x,y,d)  за  граничные  значения  волнового  поля  на

голограмме,  то  мы  получим  поле,  совпадающее  с  предметным,  т.е.  расходящееся  от

оригинала. Чтобы получить поле, сходящееся к оригиналу, т.е. инверсное к предметному

полю,  надо  в  качестве  значений  поля  на  голограмме  взять  функцию,  комплексно

сопряженную к U(x,y,d):
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где * -- символ комплексного сопряжения. Ясно, что восстановление оригинала тем более

точно, чем больше площадь голограммы. Допустим, что размер голограммы бесконечен,

т.е. что голограмма занимает всю плоскость z=0. Тогда поле, принимающее на голограмме

значения U*(x,y,d) запишется в форме:
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В плоскости оригинала, т.е. при z=d, получаем:
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Если во втором интеграле отбросить в показателе экспоненты слагаемое 2222 kd   ,

то получим поле:
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комплексно сопряженное к полю V(x,y) и, если V(x,y) вещественно, совпадающее с ним.
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1.1. План дальнейшего изложения

При математическом расчете голограмма представляет собой пленку переменной

прозрачности, которая пропускает сквозь себя поле падающей волны (обычно плоской или

сферической),  умножая  его  на  некоторую  функцию  T(x,y)  –  коэффициент  пропускания

голограммы;  очевидно,  1),(0  yxT .  При физической  реализации  голограммы  можно

моделировать рассчитанную переменную прозрачность набором отверстий. 

Таким образом, мы получаем следующую программу действий.

Bo-первых,  мы  оценим  возможности  комплексной  голограммы,  т.е.  степень

приближения полученного с её помощью изображения к оригиналу.

Во-вторых,  обсудим  проблему  создания  вещественной  голограммы  при  помощи

опорной волны («метод Габора»), а также вопрос о выборе вида опорной волны.

В-третьих,  обсудим  возможности  и  возникающие  проблемы  при аппроксимации

вещественной голограммы набором отверстий.

1.2. Комплексная голограмма

Прежде всего, выпишем интегральную формулу для поля u(x,y,z), принимающего 

при z=0 значения V(x,y): 
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Отсюда для предметного поля в плоскости голограммы получаем:

 dddyxGVyxU
S
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Согласно сказанному выше, поле, сходящееся к оригиналу, должно принимать на

голограмме значения  U*(x,y). Кроме того, как известно в оптике, иногда для подавления

помех  полезно  вводить  аподизацию,  т.е.  функцию  D(x,y),  равную  единице  в  середине

голограммы и плавно спадающую к её краям. Поэтому поле, исходящее от голограммы,

будет в плоскости оригинала иметь вид:

1( , ) ( , ) *( , ) ( , , )
G

V p q D x y U x y G x p y q d dxdy   . (П.1.11)

Или, используя (П.1.10),
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где ядро R(ξ,η,p,q) имеет вид:
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( , , , ) ( , ) ( , , ) *( , , )
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R p q D x y G x p y q d G x y d dxdy        . (П.1.13)

Выделяя  в  функциях  G и  G* осциллирующие  множители  и  обозначая  через

M(x,y,ξ,η,p,q)  произведение  внеэкспоненциальных  множителей  в  функциях  G, G*,

получим:
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Функция R(ξ,η,p,q) является распределением амплитуды изображения при условии,

что оригинал является δ-функцией,  сосредоточенной в точке  p=ξ,  q=η.  Рассмотрим как

меняется эта функция как функция (p,q) при фиксированных (ξ,η).. Под знаком интеграла в

(П.1.14)  стоит  медленно  меняющаяся  функция  D·M,  умноженная  на  осциллирующую

функцию exp( )ik , где фазовая функция Ф имеет вид:

2 2 2 2 2 2( ) ( ) ( ) ( )x p y q d x y d            . (П.1.15)

Максимального значения функция R(ξ,η,p,q) достигает при p= ξ, q=η, когда фазовая 

функция обращается в ноль:
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Простые оценки показывают, что R(ξ,η,  ξ,η)  имеет порядок λ-2. Если же ρ>>λ , где ρ

--расстояние  между  точками  Ω=(ξ,η)  и  Τ=(p,q),  то  экспонента  в  (П.1.14)  быстро

осциллирует, и для оценки R(ξ,η,p,q) можно использовать двумерный метод стационарной

фазы. Оказывается, что R(ξ,η,p,q) имеет порядок λ-1/2 ρ-3/2, т.е. меньше, чем значение R(ξ,η,

ξ,η)  в (λ/ρ)3/2 раз.  Если же  D обращается  в нуль на краю голограммы, а  ее нормальная

производная на границе имеет порядок t, то. R(ξ,η,p,q) ещё в λt раз меньше. 

Рассмотрим вопрос о разрешении преобразования оригинала  V (ξ,η)  в изображение

V1(p,q), т.е. о ширине пика функции R(ξ,η,p,q). 

При удалении точки P от Ω фазовая функция Ф начинает меняться и можно считать,

что  пик  заканчивается  там,  где  вариация  этой  функции  оказывается  равной  2π;  тогда

положительные  и  отрицательные  значения  функций  D·M·cosФ  и  D·M·sinФ  при

интегрировании  в  (П.1.14)  почти  взаимно  уничтожаются  и  интеграл  (П.1.14)  делается
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малым1.  Чтобы  оценить,  какое  для  этого  потребуется  расстояние  |PΩ|,  рассмотрим

двумерную задачу. 

На Рис. П.1.1 голограмма размером 2L находится на оси x между точками D: x=L и B:

x=-L; оригинал и изображение – на прямой x=-d между точками Q и H. Фазовая функция

Ф имеет вид:

2 2 2 2( , , ) ( ) ( )p x x p d x d        . (П.1.17)

При  малом  (по  сравнению  с  геометрическими  параметрами  задачи,  но  не  по

сравнению  с  длиной  волны  λ)  смещении  Δξ  точки  P:  p=ξ+  Δξ  изменение  Ф  будет

минимально  в  точке  А:  x=L где  оно  приблизительно  равно  ( ) sin AL      и

максимально в точке B: x=−L, где ( ) sin BL      . 

Рис. П.1.1. Голографическая схема для анализа комплексной голограммы

Поэтому  полная  вариация  фазовой  функции  в  интеграле  (П.1.14)  равна

(sin sin )A Bk      2 (sin sin ) /A B      и из условия, чтобы эта вариация равнялась

1 В действительности это рассуждение не совсем точно.  Функция  M убывает при приближении к  краям
голограммы, и при вариации Ф, равной 2π, периферия голограммы не полностью компенсирует её середину.
Реально для взаимного уничтожения требуется бóльшая вариация Ф, а ширина пика, а значит и разрешение,
оказываются бóльшими, чем дают приведенные ниже оценки. Поэтому эти оценки дают лишь качественное
описание достижимого разрешения. Введение аподизации D дополнительно уменьшает роль периферийных
точек, гдеD мало, и поэтому ухудшает разрешение. Здесь имеет место полная аналогия с теорией зеркальных
антенн,  где  уменьшение  амплитуды  излучаемого  поля  к  краям  антенны  (аналог  аподизации)  подавляет
боковое излучение за счет расширения главного лепестка.

Голограмма

d

A: x=L

Ω: x=ξ

Оригинал 

P: x=p=ξ+Δξ

Ψ
A 

Ψ
B

Ψ

H

Q

Z

X

O

B: x=−L 
x=−L

O’

5



2π,  получаем  условие  для  полуширины  пика  /(sin sin )A B      .  Приближенно

заменяя sin sinA B   на 2sin , получим выражение для полной ширины пика, т.е. для

разрешающей  способности  восстановления  оригинала  по  голограмме:  2 / sin    .

Заметим,  что  эта  формула  практически  совпадает  с  формулой  Аббе  для разрешающей

способности  микроскопа2,  отличающейся  от  полученного  нами  выражения  лишь

коэффициентом 0,77.

1.3. Вещественная голограмма

Падающее  на  плоскость  голограммы  исходящее  от  оригинала  предметное  поле

U(x,y,d)=A(x,y)exp[iΨ(x,y)] характеризуется амплитудой А и фазой Ψ. При экспонировании

на  светочувствительной  пленке  фиксируется  интенсивность  А2;  информация  о  фазе  Ψ

теряется.  Чтобы сохранить эту информацию, Д. Габор предложил освещать голограмму

когерентной суммой предметного поля и опорной волны A0(x,y)exp[iΨ0(x,y)] – специально

подобранное  волновое  поле  с  известными  амплитудой  и  фазой.  Интенсивность

суммарного  поля  будет  иметь  максимумы  там,  где  предметное  поле  и  опорная  волна

находятся  в  фазе  (тогда  его  амплитуда  является  суммой амплитуд предметного поля и

опорной волны) и минимумы там, где эти поля находятся в противофазе и амплитуда их

суммы является разностью их амплитуд. Зафиксировав интенсивность суммарного поля на

светочувствительной пленке и освещая полученную голограмму волной, сопряженной к

опорной  (т.е.  имеющую  те  же  лучи  и  амплитуду,  но  противоположное  направление

распространения  получим  на  выходе  три  поля,  одно  из  которых  будет  сходиться  к

оригиналу. 

Рассмотрим  эту  процедуру  более  подробно  для  случая,  когда  предметное  поле

определяется  посредством  численного  расчета  и.  его  амплитуда  A(x,y)  и  фаза  Φ(x,y)

известны. Будем рассматривать голограмму, как амплитудный корректор, характеризуемый

положительным  коэффициентом  прозрачности  T(x,y) и  преобразующий  падающее  на

голограмму поле W в уходящее поле T·W. Выберем опорную волну A0(x,y)exp[ikΦ0(x,y)] и

положим:

 0 0
0

D(x,y)
T(x,y)= CA (x,y)+2A(x,y)cos[k( (x,y)- (x,y))]

A (x,y)
  , (П.1.18)

где  константа  С>2max[A(x,y)/A0(x,y)],  так  что  выражение,  стоящее  в  скобках,

неотрицательно. 

После  облучения  голограммы  сопряженной  к  опорной  волне  волной  W*= A0exp(-ikΦ0)

получаем на второй стороне голограммы значения:
2 Борн М. Вольф Э. «Основы оптики». М.: Наука, 1973, с. 388
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 0 ( , )
0 0( , ) ( , ) 2 ( , ) cos[ ( ( , ) ( , ))]ik x y

G
W e D x y CA x y A x y k x y x y      , (П.1.19)

исходящего от голограммы поля  W.  Это поле можно представить в виде трех слагаемых

W=W1+W2+W3, принимающих на выходе из голограммы значения:

 1  D(x,y)A(x,y)exp -ik (x,y) ;
G

W  

2 G
W  =CD(x,y)A0(x,y)exp[-ikΦ0(x,y)]; 

 3 0 D(x,y)A(x,y)exp ik[ ( , ) 2 ( , )] ;
G

W x y x y    (П.1.20)

Значения на голограмме поля W1 – это умноженная на D комплексно сопряженная к

предметном  полю  U(x,y) функция  U*(x,y),  т.е.  рассмотренная  выше  комплексная

голограмма. Это поле и степень его приближения к оригиналу рассмотрены в Разделе 1.2.

При  D≡1  поле  W2 --  это  сумма  прошедшего  сквозь  голограмму  поля  волны  W*,

сопряженной  к  опорной  и  краевых  волн,  возникших  при  дифракции  W* на  краях

голограммы. Если опорная волна – выходящая из точки  O’ (см.  Рис. П.1.1) сферическая

волна, то  W2 фокусируется в О’. Введение обращающейся в ноль на краях голограммы

функции аподизации  D подавляет краевые волны. Наконец, поле  W3  – паразитное поле.

При малых углах дифракции ΨA, ΨB поле  W3  концентрируется в плоскости оригинала в

области, симметричной к оригиналу относительно О’.

На  Рис.  П.1.3 показан  результат  математического моделирования  интенсивности

поля  в  плоскости  оригинала,  излучаемого  вещественной  голограммой  для  оригинала,

показанного на Рис. П.1.2. Детали расчетов см. ниже. 

Рис. П.1.2. Рисунок тест-объекта (оригинала) Рис. П.1.3. Результат моделирования 
восстановленного изображения

На  Рис.  П.1.3 интенсивность  поля  со  значениями  выше  определенного  порога

(подбираемого в процессе расчета) отображалась белым цветом, далее она отображалась

256 градациями серого. Изображение в левом нижнем углу рис. – это значения поля  W1.
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Крест в центре рис. – это поле W2. Как было замечено выше, это поле включает в себя как

фокусирующуюся в О’ волну W*, так и краевые волны, возникающие при дифракции W*

на  краях  голограммы  (функция  аподизации  D в  этом  расчете  отсутствовала).  Порог

отображения оказался наcтолько низким, что выше его оказались не только значения W* в

окрестности фокуса О’, но и краевые волны. Наконец, поле W3 сконцентрировано в правом

нижнем углу изображения на  Рис. П.1.3; поскольку расчет проводился для малых углов

дифракции, значения поля W3 оказались похожими на оригинал.

1.4. Физическая реализация вещественной голограммы

Когда  мы  пытаемся  аппроксимировать  переменную  прозрачность  голограммы

набором  отверстий,  мы  должны  удовлетворить  двум  взаимно  противоречащим

требованиям.  Во-первых,  требуется,  чтобы  коэффициент  пропускания  отверстия  был

пропорционален  его  площади.  Это  условие  выполняется  лишь  для  отверстий,  размер

которых не меньше, чем половина длины волны. 

С другой стороны, требуется,  чтобы отверстия располагались достаточно часто: на

периоде осцилляций рассчитанного по формуле (П.1.18) коэффициента пропускания T(x,y)

должно  располагаться  несколько  отверстий.  Период  осцилляций  функции  cos[k(Ф(x,y)-

Ф0(x,y))]  имеет  порядок  длины  волны,  деленной  на  градиент  функции  Ф(x,y)-Ф0(x,y).

Чтобы  на  этом  периоде  уместилось  несколько  отверстий  размером  не  меньше,  чем

половина длины волны, градиент Ф(x,y)-Ф0(x,y) должен быть мал. Как мы сейчас покажем,

это  условие  выполняется,  если  размер  оригинала  2l существенно  меньше,  чем  размер

голограммы 2L, а в качестве опорной волны выбрана сферическая волна с центром в точке

O’; в этом случае фаза опорной волны Ф0(x,y) поглощает значительную часть изменения

фазы Ф(x,y) предметного поля.

Рассмотрим геометрию, показанную на Рис. П.1.4. Положим сперва, что оригинал –

δ-функция,  сосредоточенная  в  точке  Р:  ξ=  ξР.  Тогда  фаза  предметного  поля

2 2( ) ( )Px x d    . Производная функции Ф(x,y)-Ф0(x,y) равна:

   2 2 2 2
0 0( ) ( ) ( ) sin sinP Px x x d x d

x x
            

 
, (П.1.21)

где углы ΨP и Ψ0 показаны на Рис. П.1.4. Максимального значения эта производная 

достигает, когда точка P совпадает с крайней точкой Q оригинала, а значение x равно 

ξQ/2=(h+2l)/2, тогда:

sin Ψ0=-sin ΨP=(h+2l)/(2 2 2( 2 )h l d  ) (П.1.22)

 и 
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 0 2 2

2
( ) ( )

( 2 )

h l
x x

x h l d

    
  

. (П.1.23)

Рис. П.1.4. Голографическая схема для анализа физической реализации вещественной голограммы

Если  оригинал  распределен  по  отрезку  QH,  то  выписанное  выражение  дает

верхнюю оценку производной. Поэтому мы получаем следующее выражение для оценки

периода  Δ осцилляций  коэффициента  пропускания  Т :.  В  трехмерной  задаче  следует

заменить в этой оценке величину h+2l на максимальное расстояние r от области оригинала

до оси:

2 2 /r d r : (П.1.24)

Рассмотрим, что дают эти оценки для условий проведенного расчета голограммы,

её аппроксимации набором отверстий и последующего эксперимента по восстановлению

оригинала, показанного на рис.2: λ =0,4416, d=2650, r=100 (все линейные размеры даны в

мкм).  Отсюда Δ~12.  Рассчитанные квадратные отверстия располагались  с шагом 5,  что

примерно  соответствует  оценке  (П.1.23);  их  площадь  выбиралась  пропорционально

рассчитанному коэффициенту пропускания голограммы.

При  математическом  моделировании  уходящее  от  голограммы  поле

аппроксимировалось  как  сумма  полей,  излучаемых  каждым  отверстием.  Поскольку

размеры  отверстий  были  не  меньше,  чем  5λ,  излучаемое  каждым  отверстием  поле

вычислялось в приближении Кирхгофа;  после чего бралась сумма по всем отверстиям.

Полученная  в  результате  интенсивность  поля  приведена  на  Рис.  П.1.5:  δ=0  в  более

крупном масштабе в области изображения оригинала. 

Голограмма

d

A: x=L
Оригинал 

Z

X

O

B: x=−L 
x=−L

O’

Ψ
0

M: x=x
MΨ

P

P: ξ= ξ
 P

Q: ξ =h+2l

H: ξ =h
N: x=h/2+l
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δ=0 δ=0,22 мкм δ=0,5 мкм δ=1 мкм

Рис. П.1.5. Результаты моделирования
восстановленного изображения при
различных значениях погрешности
расположения отверстий голограммы

При  проведении  натурного  эксперимента

была  получена  фотография  изображения,

приведенная на Рис. П.1.6. Мы видим, что качество изображения гораздо хуже, чем на Рис.

П.1.3 или  Рис.  П.1.5:  δ=0. Возможной причиной такого качества изображения является

неточность  работы  литографа3 --  аппарата,  прожигающего  отверстия  в  непрозрачной

пленке.  Эти  погрешности  могут  быть  двух  типов  –  погрешность  формы  и  размеров

отверстий  и  погрешность  в  их  расположении.  Последняя  погрешность  была

промоделирована  в  математическом  расчете.  Для  этого  при  расчете  поля  от  каждого

отверстия  его  каждая  из  его  координат

возмущалась на случайную величину, равномерно

распределенную  на  интервале  (-δ/2,  δ/2).

Полученные  результаты  показаны  на  Рис.  П.1.5

при  δ=0;  0,22;  0,5  и  1  мкм.  Значение  δ=0

соответствует невозмущенному полю. Мы видим,

что  изображение,  полученное  в  эксперименте

напоминает  по  характеру  значению  δ=1,  т.е.

случайным  возмущениям  положений  отверстий

порядка длины волны λ=0,44.

Имеется  ещё  одно  обстоятельство,  которое  следует  учесть  при  физической

реализации голограммы при расположении отверстий по регулярной сетке. В этом случае

голограмма работает как приближенная дифракционная решетка. На Рис. П.1.7 приведены

результаты расчета в более мелком масштабе, примерно вчетверо меньшем, чем на  Рис.

П.1.3. Мы видим, что помимо нулевого порядка основного изображения (в правом верхнем

углу,  ниже  и  левее  образа  падающей  волны),  имеются  следующие  дифракционные

3 Т. е. литографического генератора изображений на базе электронно-лучевой установки
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Рис. П.1.7. Результаты моделирования 
восстановленного изображения в 
уменьшенном масштабе

Рис. П.1.6. Фотография изображения, 
полученная в натурном эксперименте



порядки.  При  этом образы  краевых  волн,  возникающих  при  дифракции  падающей  на

голограмму волны на краях голограммы (см. Рис. П.1.3) в нулевом порядке накладываются

на  образы  этих  волн  в  следующих  порядках.  Образы  оригинала  в  нашем  случае  не

налагаются друг на друга, однако при больших размерах оригинала следует заранее учесть

такую возможность и подобрать геометрические параметры таким образом, чтобы этого

не случилось.
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